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It is shown that the number c,, of self-avoiding walks of length n in Z a is an 
increasing function of n. 

KEY W O R D S :  Self-avoiding walks. 

1. I N T R O D U C T I O N  

A self-avoiding walk (SAW) of length n in Z a (d~>2) is an ordered set 
W =  (x0 = 0, xl ..... xn) of distinct vertices in Z d such that 

] x ~ - x k _ l ]  = 1, k =  1, 2,..., n (1.1) 

The idea behind this notion is that a particle starts at 0 and then visits the 
vertices x~, x2,..., xn in succession. Thus, it cannot visit a vertex more than 
once. We can equally well describe W by listing its edges (xo, x~), 
(Xl, x2),..., (xn_~, xn) which together with the vertices form a directed 
graph. 

Let ~ denote the set of SAWs of length n (we treat d as fixed) and 
let cA= 1~[, the cardinality of ~ .  It is difficult to calculate cn even for 
fairly moderate n, but a number of bounds and asymptotic results about c~ 
are known. 

Hammersley and Welsh (~ proved that there are constants kt > 1 and 
> 0 depending on d such that 

#n ~< c~ ~< #n exp(0ml/2) (1.2) 

Kesten (z) proved that 

[c.+ z /c . - -yz l  <<.An 1/3 (1.3) 
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for some constant A. Both papers also contain several related results. There 
has been little mathematically rigorous progress since Kesten's paper. An 
interesting exception is the paper by Slade. (4) One obvious question is 
whether (1.3) can be extended to a result of the form 

cn + 1/Cn --* li (at some specified rate) (1.4) 

Many authors have worked on Monte Carlo and related computer-inten- 
sive methods to estimate p and other important quantities arising in con- 
nection with SAWs. An extensive list of papers of this type is given by 
Madras and Sokal. (3) The interest in these results is related to the idea that 
SAWs can be used as models for linear polymer molecules, as discussed in 
the review paper by Whittington 15) for example. The large number of 
papers reflects the fact that the structure of SAWs is so complex and cn 
grows so fast that even computer studies are difficult. 

Using (1.2), (1.3), and the elementary inequalities cn 1> d n and c,+1~< 
( 2 d -  1) c,,  we deduce that 

4 2 4d 2 ( 2 d - 1 ) C n  <~c n (1.5) Cn ~ "3]'l en+ 2 ~ + 1  + 1  

for n sufficiently large. Also, it is easy to show that cn ~< on+2 for all n. 
Remarkably, it has not been shown that c, ~< cn + 1 holds for all n. The main 
result of this note fills this gap. It is to be hoped that the methodology used 
in the proof of the following theorem can be modified to help obtain other 
results about SAWs. 

Theorem.  For d ~> 2 and all n, cn<<.cn+l. 

The basic idea of the proof is to construct a one-to-one function 
from ~ --, ~ + 1. The part of the proof which does not depend on d is given 
in Section 2. The more complex second part is given in Section 3 for the 
planar case d =  2, and in Section 4 for the higher-dimensional case d >  2. 

The following notational conventions are useful. A segment 

(Yl, Y2 ..... Yk) of a SAW W is the collection {(Yl, Y2), (Y2, Y3) ..... 
(Yk-1, Yk)} of successive edges of W. For  many purposes the directed 
nature of the graph W is unimportant. It is often convenient to write "the 
edge [Yl, Y2]" as shorthand for the passage "(Yl, Y2) or (Y2, Yl), 
whichever is an edge of W." The expression "the segment [Yl ..... Yk]" 
has a similar meaning. If a statement relates to an endpoint of W by 
mentioning xl or x , _  1, say, then the order does matter and is written with 
more care. 
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2. PROOF OF THE T H E O R E M :  FIRST PART 

The unit vectors in E_ d are the 2d vectors of the form (~1,..., gd) such 
that one of the ~j is 1 or - 1 and the others are all 0. We denote them by 
ul, u2,..., u2u, where u, has a 1 in the ith component for i~<dand a - 1  in 
the ( i - d ) t h  component for i>d. In particular, u i + u i + ~ = 0  for 1 <~i<~d. 
Let U =  {u 1 ..... U2d}- 

A rectangle in 7/d is a set 
d 

R := ]-[ {aj, a j+  1,..., bj} (2.1) 
j = l  

where aj and bj are integers with aj ~< bj. The faces of such a rectangle are 
the 2d sets 

d 

Fi := 1-[ Hi, i =  1, 2 ..... 2d (2.2) 
j = l  

where //1.= {aj, a )+  1 ..... bj} for j(~ {i, i - d } ,  and H i =  {bi} if i<~d and 
H i _ d =  {a~} if i >  d. Suppose a , <  bi for all i~< d; then ui is orthogonal to F,. 
for all i and in fact points from Fi toward the outside of R; we call u~ the 
outward normal (unit) vector for Fg and Ui+d or ui_ d, as appropriate, the 
inward normal (unit) vector. All the other uj in U are parallel to Fi. 

For  each i ~< 2d we define a partial order ~<~ on E d as follows: for i ~< d, 
(~1,..., ~d)~<~(t/~ ..... t/d) iff ~j~<t/j for all j; and for d<i<~2d, (~  ..... ~d)<~ 
(t/l,..., t/d) iff ~j~<t/j for all j r  and ~i_d>th_d.  A unit vector u is 
upward (downward) with respect to %- if 0 ~<i u (respectively u ~<~ 0). 

Now let W =  (0, x~ ..... x,,) e 4 .  The adjacent vertices (in W) to xk are 
xk 1 and xk+ ~ (or only one of these if k = 0 or k = n). We let R be the least 
rectangle containing W. There is at least one vertex of W in each face Fi 
of R. The vertex ( ~  ..... ~d) of W which is lexicographically largest among 
all vertices in Wc~ Fi is called the pivot point of W for F~. It is clear that 
the pivot point for Fi is a maximal vertex relative to ~<~ among all vertices 
of W. Note that the pivot point for F~ is in F~, but may also be in Fj 
for some j r  We will define W' := (0, v~,..., v,,+~)=qs(W) in a manner 
which depends on which of the following three disjoint subclasses of 5P~ 
contains W: 

J1 := { We 5P~: for some i, either x, E F i or x,  + ui e Fi\ W} 

:= { Ws  5~ for some i, either 0 e Fi or ui e Fi\ W} 

:= ~ \ ( ~  ~ ~ )  

If W e ~ ,  choose i such that x ,  eF i  or x~+ u i ~ F i \ W  and define W ' =  
(0, xl,..., x~, x ,  + u~). If We ~2, choose i such that 0 e Fi or ui e F~\ W and 
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define W'= (0, -u i ,  x~ -ui,..., x,,-u~). In words, W' is formed from Wby  
appending a vertex before 0 and then translating the graph to place the 
new vertex at 0. If We J3, we construct W' by first perturbing W near 
a pivot point (details to be given later) to obtain a SAW W " =  
(0, vl ..... v n + 2 ) e ~ + 2  and then deleting the last vertex vn+2 and edge 
from W". 

Let R' be the least rectangle containing W', and let F~, i ~< 2d, be its 
faces and p~, i ~< 2d, be the pivot point of W' for F~. Although we have not 
yet given the details of the perturbation for We J3, we temporarily take it 
for granted that the following conditions hold for We J3: 

R c R '  (2.3) 

x,  ql W' (2.4) 

and 

v , + l = x , _ l e  W (2.5) 

As a first step toward showing that ~b is one-to-one, we have the 
following result. 

I_emma 1. Given W'=q~(W) for some W e ~ ,  we can determine 
which of J l ,  J2, and J3 contains W. 

Proof. If We J l ,  then, for some i, 

v,+leF~ and vnCF~ (2.6) 

If We J2, then there is no i for which (2.6) holds, but, for some i, 

0 e F ;  and vlq~F; (2.7) 

Now suppose We J3. If xn_ ~ = v, + ~ e F; for some i (necessarily unique), 
then x, , -xn_~ = -ui.  By (2.3) and (2.4), Vn--Vn+l r --Us, SO vneF~ also, 
contrary to (2.6). Thus, (2.6) holds if and only if W E J  1. For We J3, it is 
also clear that O(iF; by (2.3) and the definition of J2. Thus, if (2.6) fails, 
then (2.7) holds if and only if We J2. | 

If We j~ (We  J2), one can recover W from W' by deleting the final 
vertex and edge (the first vertex and edge and translating by -Vl ,  respec- 
tively). Our remaining task is to define 05 on J3 in such a way that this 
recovery process can be performed on ~ also. 

The details of the definition of q> on J3 are somewhat different in the 
cases d =  2 and d >  2. The basic idea is the same, however, and it is useful 
to prepare for the details by giving an outline of the construction. We 
assume henceforth that We J3. 
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A pivot point Pi of W is said to be an upwardly mobile pivot point 

(UMP P )  for Fi if W satisfies certain conditions near Pi. I fp i  is a UMPP,  
then there are at least 2 d - 1  possible perturbations (in an upward direc- 
tion relative to ~<i) near Pi such that the pivot point p; of the perturbed 
SAW is also a U M P P  for F;. If p~ is not upwardly mobile, there is at 
least one possible such perturbation. Then W' is constructed from W by 
choosing a different perturbation near some pi according to the direction of 
the edge (xn 1, x~) to get W" and then deleting that edge from W" to get 
W'. If the choice of perturbation is made judiciously, its location can be 
recovered by locating the largest i (in some ordering) for which p; is a 
UMPP,  and x ,  and W can then be recovered by determining exactly which 
perturbation was used. 

3. C O M P L E T I O N  OF T H E  P R O O F  IN T H E  P L A N A R  CASE 

When d =  2, we can think of FI,..., F4 a s  the right, top, left, and 
bottom faces, respectively, of R. The pivot points are the rightmost or top 
vertices of W for their faces. Since We ~ ,  [ P 4  - -  roul q- u2, P4 -- rout, P4 -- 
(ro -- 1) ul,.--, P4, P4 + u2] is a segment of W for some ro > 0. 

D e f i n i t i o n .  We call P4 a U M P P  for F 4 if W c s { p 4 + u 2 + r u  1" 
r > 0 } = ~ and one of the following five disjoint conditions also holds (see 
Fig. 1 ): 

(A) ro>  1. 

( B )  r 0 = 1, I-p4 - 2ul + u2, P4 - ul q- u2], and [P4 + u21 P4 q- 2u2] are 
edges of W and 

W ~  { p a - r u z :  r >  1} = Wc~ { p 4 +  2uz + rul: r > 0 }  = ~  

(C) r o = l  and W c ~ { p 4 + u z - r u l : r > l } =  ~ .  

(D) t o = l ,  (B) fails, W n { p a - r u 1 : r > l } = ~ ,  and p 4 + u 2 -  
ru I ~ W for some r > 2. 

(E) r o = 1  and for some r ~ > l ,  p g - r ~ u l E W ,  and Wc~ 
{P4 q- U2 - -  rul: r > rl} = ~ .  

The pivot point p~ for F1 is said to be a U M P P  if Wc~ {Pl - u ~  + ru2: 
r > 0 }  = ~ .  

The pivot points p~ and p'l are called UMPPs  if the corresponding 
statements hold for W'. 

T h e  T h r e e  P e r t u r b a t i o n s .  We next construct three SAWs in 
5P~ + 2 by perturbing W near one of the pivot points P4, Pl,  or P2. There are 
three cases. 
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Case I. P4 is a U M P P  for F 4. The three perturbations are: 

(i) Replace the segment [ P 4 -  fOUl,---, P4] by the segment 

[-P4 -- rottl, P4 -- roul -- u2, P4 -- (ro -- 1 ) U 1 - -  b /2  , . . . ,  P4 - -  U 2 ,  P4] 

(ii) Replace [P4, P4 + u2] by 

[P4, P4 4- ul, P4 q- u2 4- Ul, P4 + u2] 

(iii) If (A) holds, replace [ P 4 -  ul, P4] by 

[ p n - u l ,  p 4 - u 2 - u l ,  p 4 - u 2 ,  P4] 

If (B) holds, replace [P4, P4 + u2, P4 + 2u2] by 

[P4, P4 q- Ul, P4 4- Ul q- u2, P4 4- Ul 4- 2uz, P4 q- 2u2] 

I ! 
(A) (B) 

" t" -! ?~:~I ]- 
(C) (D) 

p, 

(E) 

K e y : - - -  ~nd~cates F4 
Indicates no ve r tex  beyond ar row 

Fig. 1. Upwardly mobile pivot points for F4. 
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I f  (C) holds, replace [ P 4  - -  Ul ,  P4 - -  Ul + b/23 by 

[ P 4  - -  t / l ,  P4 - -  2Ul ,  P 4  - -  2ul + u 2 ,  P4 - -  Ul  + Ll2] 

If (D) holds, and q is the leftmost point of W ~  { p 4 + u z - r u l : r > 2 } ,  
replace [q, q + Ul] by 

[q, q -  ua, q + ul - u2, q + u l ]  

If (E) holds, replace [ P 4 -  r~ u~, P 4 -  rl u~ + u2] by 

[ p 4 - r l u l ,  P 4 -  (rl + 1) ul, P 4 -  (rx + 1) ul +u2,  p 4 - r l u ~  + u2] 

Case 2. P4 is not a U M P P  for F4 andp~ is a UMPP for F~. The 
three perturbations are: 

(iv) Replace [ p ~ , p l - u 2 ]  by [Pl ,  P l + u l , p l - - U z + u l , p l - - U z l -  

(v) Replace [pl ,  P l - U ~ ]  by [p~, Pl + u2, Pl + u z - u l ,  P l - U x ] .  

(vi) Same as (i). 

Case 
The three 

(vii) 

(viii) 

(ix) 

3. P4 is not a UMPP for F4, and Pl is not a UMPP for F~. 
perturbations are: 

Replace [P2, p 2 - u l ]  by [ P 2 ,  p2+U2, p2--Ul At- U2, P2-- L/l]" 
Same as (iv). 

Same as (i). 

We note that each of the above perturbations yields a SAW in 5P + 2- 

D e f i n i t i o n  o f  q~(I/I/) f o r  INs J3 .  Given W, we first note which of 
the above three cases applies and then construct W"e  ~,+2 by perturbing 
W in one of the three indicated ways, subject to the following two restric- 
tions: first, if We ~ and W1 e ~ are the same up to but not including their 
final edges, then different perturbations are applied to W and W~; and 
second, if xn_ 1 e F~ for some necessarily unique i, then a perturbation of 
type (i), (vi), or (ix) is used, while if p4 is a U M P P  satisfying (B) and x,  = 
P4 -4- 2U2, then a perturbation of type (ii) is used. If the resulting SAW in 
4 + 2  is W " =  (0, vl, v2,..., vn+2), we define W ' =  ~b(W)= (0, vl ..... v~+l). 

We note that (2.3) and (2.4) hold in all cases. The second restriction 
on the choice of perturbation guarantees that the edge (xn 1, xn) is in W" 
and hence that vn+l =Xn_l .  Thus, (2.5) also holds. 

The O n e - t o - O n e n e s s  o f  q) on  J a .  Suppose first that the pertur- 
bation used to construct W" from W is of type (i), (ii), (iii), (vi), or (ix). 
It is tedious but straightforward to see that the pivot point p~ is a UMPP 
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for F~, in this case. For  example, if p4 is a U M P P  satisfying (D) for F4, the 
perturbation of type (iii) makes p ;  a U M P P  satisfying (E) for F~. Next 
suppose that the perturbation is of type (iv), (v), or (viii). Then P'I is a 
U M P P  for F] .  Also, these perturbations are only used ifp4 is not a U M P P  
for F4, which implies in particular that if p4~F1, then [ p 4 - u l  + u2, 
P4 - ul, P4, P4 + u2, P4 + 2u2] is a segment of W. Hence p~ = P4 and conse- 
quently is not a U M P P  for F~. Finally, suppose P4 is not a U M P P  for F4; 
Pl is not a U M P P  for F~; and the perturbation is of type (vii). It  is clear 
that p~, = P4 is not a U M P P  for F~, and p'~ = p~ is not a U M P P  for F'I. 

Thus, we can determine from W' which of these three situations 
applies. An examination of the configurations that result from each type of 
perturbation shows that they are distinguishable in terms of their nature 
near p~ and p'~. Hence W* = (0, x~ ..... xn_ 1) can be recovered from W'. We 
can then recover W by using the association between the perturbations and 
the possible edges (xn_ 1, xn). 

4. C O M P L E T I O N  OF THE PROOF IN H IGHER D I M E N S I O N S  

Let WC--6ff 3. When d > 2 ,  we can use a much simpler definition of 
U M P P  and a smaller variety of perturbations. As before, let Pi be the pivot 
point for Fi, i~<2d. We recall that if y is adjacent to Pi, then y %  p~. 

D e f i n i t i o n .  We say p~ is a U M P P  for F~ if s e W and y ~ s, where 
y is adjacent to p~, together imply that s = y or s = Pi. 

The 2 d - 1  P e r t u r b a t i o n s .  A type I perturbation on F~ is the 
replacement of [y,  p~] by [y,  y + u, pi + u, p~], where y is adjacent to p~ in 
W, u is an upward unit vector relative to ~<i, and u r  A type H 
perturbation on F~ is the replacement of [y, pi, z] by [y,  y+u ,  pi+u,  
z + u, z] ,  where y and z are adjacent to p~ in W, u is upward relative to %,  
u ~ p~ - y, and u r p~ - z. A type I* perturbation on F~ is a type I perturba- 
tion on F~ for which u = u~. In all cases, u is called the perturbing unit vector 
and, if W" is a SAW obtained by perturbing W, the vertices in W " \  W are 
called the vertices added to W. 

Since pi e F:, at least one of its adjacent vertices is in F~, so at least one 
type I* perturbation on Fi is possible in the sense that it gives rise to a 
SAW in 5:~ + 2. If p~ is a U M P P ,  then all 2 ( d -  1) type I and d -  2 type II  
perturbations are possible in this sense. Since d~> 3, this provides at least 
2 d -  1 perturbations. (The nonexistence of type II perturbations when d- -  2 
is the reason the planar case requires a separate argument.) 

As in the planar situation, we choose our 2 d -  1 perturbations accord- 
ing to which of three cases applies. I fp2 a is a U M P P  for Fza, choose 2 d -  2 
type I perturbations and one type II perturbation, all on F2a. If P2d is not 
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a UMPP for F2d , but Pi is a UMPP for Fi for some i < 2d, take the largest 
such i and choose 2 d - 2  type I perturbations on F i and one type I* pertur- 
bation on F2d. If no p~ is a U M P P  for Fg, choose one type I* perturbation 
on each of 2 d -  1 faces. 

D e f i n i t i o n  o f  Q ( W ) .  Given We j3 ,  w e  define W"= 
(O, vl,...,v,,+2) and W'=~b(W)=(0 ,  vl,...,v,+~) as in the planar case, 
except that the second restriction becomes: if x ,_  1 e F~ for some i, then a 
type I* perturbation is used. 

As before, (2.3)-(2.5) hold. 

The One- to-Oneness of q) on J3 

k e m m a  2. Suppose that the perturbation used in the construction 
of W" is on Fj. Then PS is a U M P P  for Fj  and pjr  W. 

Proof. If pj is a U M P P  for Fj, the conclusion is clear, whereas if it 
is not, then the perturbation is of type I* and the conclusion again 
follows. | 

If there were no interaction between faces, we could locate the pertur- 
bation by finding the largest j for which Fj has a UMPP. However, if pj 
is near the edge of Fj, a perturbation on Fj may give rise to a UMPP for 
F; where i > j  in one of two ways: first, it is possible that p; 4= pi, and 
second, it is possible that p; = Pi, but that the adjacent vertices to p[ in W' 
are different from the adjacent vertices to p; in W. These complications, 
which we managed to avoid in the planar case, are dealt with in the 
following lemmas. 

l . e m m a  3. Let the perturbation be on Fj and let i>~j be such that 
p; (=vk,  say) is a U M P P  for FI and p ; r  W. Then exactly one of the 
following three statements holds: 

( S i )  Uk--Uk_l=Uk+l--Uk+2 and, if i > d  and Vk--Vk ~=Uz, then 

($2) Vk--Vk+I=V~_I--Vk_2 and, if i > d  and Vk--V~+l=Ui, then 
F ; n  W'=  {vk, v~-l}. 

($3) Vk+2--Vk+l=V~_2--Vk_l and vk+Vk+2+Vk_leW' .  

The first two statements can only hold for type I perturbations and the 
third only for type II perturbations. In the three cases, the perturbation 
replaces [vk_l,  vk+2] by Irk_l,..., Vk+2], Irk_2, V~+I] by [vk 2, ' " ,  Vk+l], 
and [v~ 2, Vk+Vk+2--G+I,  Vk+2] by [Vk-2,--.,Vk+2], respectively. 

Proof. If the perturbation is of type I and the added vertices are vk 
and vk + 1, then the first equation in ($1) holds. If i > d and vk - v~__ 1 = u~, 
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then the perturbation is of type I* on Fi and i=j, since u~ is upward only 
with respect to ~<i; but then F; c~ W ' =  {vk, vk+ ~}. Statement (82) similarly 
follows if the added vertices are vk and Vk_~. If the perturbation is of 
type II, which implies i=j=2d, then vk, Vk_l, and vk+l are the three 
added vertices and ($3) follows. The equations in (S1) and (Sz) together 
imply vk + 2 = vk 2, so they cannot both hold. Similarly, ($3) is inconsistent 
with either ($1) or ($2). The final statement is now obvious. I 

I . e m m a  4. Suppose the perturbation is on Fj. Let ii> j be such that 
p~=vk is a U M P P  for F;  and p ;~  W. Then none of ($1), ($2), or ($3) 
holds. 

ProoL By Lemma 2, i > j, so j < 2d. Therefore, the perturbation is of 
type I. Since p; ~ F;, it must in fact be the pivot point for Fi, that is, p; = Pi. 
On the other hand, Pi cannot be a U M P P  for Fi, for if it were, the pertur- 
bation would be on Fi rather than Fj. The only situation consistent with 
Pi being a U M P P  for F;  but not for Fi is that one of the adjacent vertices 
of p~ in W', say V~+l, is not in W. The perturbing vector u must then 
satisfy 

U=Vk+I--Vk=Vk+2--Vk+3 (4.1) 

and the two added vertices must be Vk+~ and vk+2. Since (4.1) and ($1) 
together imply vk+3 = vk_ 1, ($1) fails. Since vk+3 = vk + vk+2 - vk+ 1, ($3) 
fails. Note that u must be upward with respect to ~<j, but, since vk is a 
U M P P  for F~, u =  Vk+ l -vk  must be downward with respect to ~<~. Hence 
j >  d and u =u j  or else i >  d and u = -u~. Suppose, first, that u =u j  and 
j > d. The perturbation is therefore of type I* and 

FS o W ' =  {l)k+ i, 1)k+2} (4.2) 

It follows that veeFjc~F~. Since vk is a pivot point of F;,  we have 
vk+l<<,iv~ and Ve_l<~ive. Since vkeFj  and Vk+~C-Fj, we deduce that 
Vk_l eFj .  If ($2) held, then v e 2=vk+l  --Vk+V~_l eFj, contrary to (4.2). 
So ($2) must fail in the case u=uj. Now suppose that u =  -u~ and i>d. 
By (4.1), we have that Vk+3eF~=F~, so ($2) must fail in this case. | 

The rest of the proof of the theorem is easy. Pick the largest i such that 
p; is a U M P P  for F;  and one of ($1), ($2), or ($3) holds. By Lemmas 2 
and 3 such an i exists and i>>, j, where the perturbation is on Fj. By 
Lemma 4, p; r W. Then, by Lemma 3 the perturbation can be identified and 
all but the final edge of W can be recovered. That edge is then recovered 
via the association between that edge and the choice of perturbation in the 
construction of W". I 
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